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ANALYSIS OF OPTICAL-PYROMETRICAL TEMPERATURE MEASUREMENTS

J. Verch
ABSTRACT 23749 4
A numerical procedure enabling the analysis of /640%

temperature measurements by optical pyrometry is
described. The determination of the effective wave-
length normally carried out with present methods,
1«2‘;\(‘5)\1‘)-_1,23’ and the complicated iterative procedure it entails,
are eliminated. A high degree of accuracy is
attained with a limited amount of calculation: for
three typical commercial color filters, the maximum
errors arising from the calculations are between

0.01 and 0.04 degree for a temperature range of

/i MWW/& 7

Optical-pyrometrical temperature measurements are customarily

1200-3000° K.

evaluated by a procedure described in Henning (Ref. 1), which requires a
knowledge of the effective wavelength of the color filter utilized. This
wavelength, however, depends on two temperatures -- the observational
temperature and the temperature to be measured. An expression first

given by Foote (Ref. 2) for the effective limitipg wavelength makes it

*Note: Numbers in the margin indicate pagination in the original
foreign text.




possible for the effective wavelength, and thus the unknown temperature
also, to be approximated by an iterative procedure. This method offers
the inexperienced calculator little more than difficulty; moreover, a
large number of numerical integrations must be performed in order to
tabulate the effective limiting wavelength.

Objective temperature-measuring devices have recently been in /641
the process of development to an increasing extent, and have already
afforded relative accuracies within hundredths of a degree. This is a
precision which cannot be guaranteed by the convgntional computational
method, and is also the reason for the obvious desire for a better
method of evaluation.

The following describes a new procedure which complies with the
increased demands for accuracy, and even reduces the number of integrations
which are necessary. Iterations are furthermore eliminated, since the
unknown temperature may be specifically calculated. The orderly formula

apparatus should also be more easily managed by less practiced calculators.

General Principles

Optical measurement of temperature deals chiefly with a comparison
of two radiant temperatures - in general, by attempting by means of
variable attenuation to make the weakened radiations seem identical to an
observer, or to be so estimated by an objective receiver. The condition
for successfully balancing the radiation may be mathematically formulated
as follows:

D[R PAT) V() DAL=’ [eATIPATIVA) D(HdA. (1)

Here D, D' and D()), D'()) denote the transmittancy of neutral and




selective attenuating media, respectively; ¢(A,T) and ¢'(A,T') indicate
the degree of emission of the radiant body which generally depends on
wavelength A and temperature T or T'; P(A,T) is Planck's function

which, with the constant factor omitted, is:
P(A4,T) = -5 [exp — —1]1. - (2)

V(2) 1is the sensitivity of the human eye to brightness, which in
objective observation is replaced by the sensitivity of the receiver em-
ployed.

Formula (1) is valid if the radiation is not equilibrated directly,
but through a secondary norm (the pyrometer bulb). If the left side of
Equation (1) is designated by J, the right by J', and the corresponding
expression for the secondary norm by J*, the relations

J = J* (3a)

and J' = J% (3b)
are valid, whence Equation (1) again ensues.
In order to determine an unknown temperature T, the temperature T'
of the comparison radiator must be known, as well as transmittancy D, D'
and D(A), D'()A) and sensitivity V(A). A knowledge of the radiant
properties of both radiators, described by the degree of emission €(A,T),
is also required. A black body is generally used as the comparison
radiator; therefore; g'(A,T')= 1. In order to simplify the calculating /642
procedure, let us assume that the second radiator is also a black body
whoge temperature T is to be determined. Thus, we also have (A, T) = 1.

Thus, Equation (1) can be reduced to:

D f;P(T) V(2) D(2) =D [PILT) V() DRz, @




Description of the Computational Procedure

For sufficiently small values of A*T, Planck's function may be

replaced by Wien's approximation:
P(L,T) = W(AT) = 2-Sexp|— x|, -. (5)
T AT -

If the spectral region in which D(X) or D'()A) differ from zero is
likewise so small that variation in A need not be taken into account,
the integrals in Equation (4) are converted into expressions such as:

" Ae AT (6)
with fixed Ay. Taking the logarithm of expression (6), we have:

log.flP(). T)V(A)D(A)d/l logA—— M°’ ¢))
. }-.T C

This procedure may also be regarded as the first approximation of

a Taylor expansion whose generalization is:
I ST Bk
Jog[;PAT VDA dA=T . (8)
The case in which the series is truncated at k = 3 is to be treated

here as a particular case of Equation (8). Then the result derived by

taking the logarithm of Equation (4) is:
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logD +a, +a, (-i‘-)+ a, (_'IT) +%’(_'1—‘.)-"
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To determine the unknown temperature T, the right side of Equation

(10) must be known. Here it is set equal to X, so that it follows:




=t a—t f=—=X=0." 11
T P..',ﬁ:ra_ R o
This equation may be solved by approximation and, with the choice /643
of X as the initial value, it assumes the form:
= =XiX), | (12)
where £(X) is close to 1. Thus, the further transformationm:
T=—g(X)-
Lo X
may also be made, and g(X) can also be expanded in a series so that finally,
disregarding terms of higher order, we obtain:
T¢ = AX~{+ B+ CX¥. (14)
The symbol T#* is used to differentiate the computed from the real

value of T.

Calculating the Constants

The constants of Equation (9) may be computed from a system of
euations of the fourth order. If we 1ntroduce the notation:
‘L,.»_ longP(AT,,)V().)D(}.)d). 2 (15)

n—l .45
then, with fixed chosen temperatures T s the constants are derived as:
' ak = Zbk.nLn ' (16)
’ . a=1
The temperatures may be so comblned ‘that the values of by ,n in
Equation (16) become very simple.
The constants of Equation (14) may likewise be computed from a system
of equations, if X is expressed by *%— according to Equation (11), and

three appropriately-chosen temperatures T, are introduced. If Ty* = Ty,

it is then true that :




14a — —=A4+B —_— —_—
‘aT +ﬂT + (T +a +ﬂ

. m. . m,- Tm Tm
4C(=—+a +ﬂ oL (17)

Approximations which represent A, B, C as a function of a and B
are given below. Temperatures Ty, T3 and T4 from equation system (15)
are substituted for the values of T, for computational purposes. The
same patterns are used to figure the primed values ay' as for the plain
values ay; the values of L are then replaced by the corresponding primed
values.

First combination: /644

T,_1200°K T,_L)OO°K T, __2000°K T, —13ooo°K '
0 me=10L, - 20L;+ 15L,— 4L,
'-fa,=(26Ll~_93L2+114L —~47L‘)10' _
(8 ={4L,—11L, + 10L,— 3L,)18: 10'

ag=( »L,—— 3L, 4 3L,— . L) 36 Jo0
A=1: (2as—3aﬂ)1o—
j B=‘a" e (2a8—3aﬂ)1o—° g

(ﬁ—a=) + —(2a’——3aﬂ) 10-=
Second combination:
T, = 1000 °K T, ~1200°K T,=1500°K T, __200_0°K_;
8y = 20L—— 45L, + 36L a—10L; . ‘
-—(471.,—162L,+189L —74L‘)10’

ey =(5L— 14L,+ 13L,= 4L,)1810' |
ag=(- Iq‘* 3L,+- 3L,— 03610'“"

A=1 (2a’-—3aﬂ)10" |
A B"‘=é ——-—(2a’—3aﬂ)10"‘ o

~(f— ﬂ+”ww—wmw4~_“’,




Third combination:
T, = 1500 °K. T,—1800°K T, = 9250 °K. T, = 3000 °K
8= 20L,— 45L,% 36L,—10L,
| =(47L,_162L2+189L,_74L.)lldi
Cap=(5T— ML 4 I3L,— 4L)§1—10°_'_:7_' _
:'aa%( L;—. 3L, 4+ - 3L—H .)243109.'.' o
A=1 - v'lA.+-—(2a3—3aﬂ).lO- .
B=a. (2a°-—3a/3)10' :
(ﬁ a?) + “7 (2a3 3aﬁ)10"'. -

Computational Accuracy /645

The accuracy of the calculations depends on the spectral position and
the extension of the filter band and on the temperature range or combination.
Figure 1 gives the standardized transmittancy curves of three color filters,

as utilized in optical pyrometry.
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Figure 1

Relative Transmittancy of Three Color Filters
ue; (b)-Green; (c)-Red; (d)-Relative Transmittancy; (e)-Wavelength A

On the assumption that D(X) = D'()), these values were used to compute




the integrals of Equation (4) for various temperatures with fixed
T' = Tpy = 1336.159K. For every T, the pertinent value of D'/D is /646
derived from this, which is substituted in the right side of Equation

(10) to calculate X. Because D()A) = D'()A), the following equalities

develop: |
o n=0m=Lp=a =4
X=——ta—"'f—dlog—.

o Taw T o Tal® D

The computed value T* belonging to T then results from Equation /647
(14). Figure 2 gives the differences AT = T - T* as a function of
T or T*, which cannot be differentiated on the axis of the abscissas,
for the three color filters and the first combination. With the green
and blue filters, AT in the 1200-3000°K temperature range remains less
than 0.01°; with the red filter, less than 0.04°. Even when the temperature

range is in each case exceeded by 200°, all requirements for accuracy are
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Figures 2a-c. Computational Errors for Three Color Filters

and First Combination

(a)-Red Filter




still fulfilled. Figure 3 gives a similar presentation for the red
filter and the second combination. Here AT between 1000 and 2000°K
remains even less than 0.003°. The third combination, on the contrary,

affords no essential improvement in the 2000-3000°K temperature range.
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Figufe'Zb
(b)~-Green Filter

Since the temperature of solidifying gold T,,, is the basis of the
”»
optical temperature scale, the error specification which has just been
formulated contains all the necessary information. No error propagation

occurs if the values of T* are used for subsequent calculations, as the

procedure is applied step by step.

Applications

1. Temperature Determination
(a) Neutral attenuation media.

In this case D(X) = D'()A) and we have:

Y0=0, n=1"rn=a yn=4
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Figure 2c

(¢c)-Blue Filter

Let a black body have an unknown temperature T, and let
its radiation be attenuated with a rotating sector of transmittancy D. /648
Calibration was accomplished without the sector, i.e., D' = 1, and the

observation provides observational temperature T'. We then have:

X _1»*}4_& 1 2‘4,5 LR\ B (18)
R T T/ R VO B e

If, on the contrary,'rédiation of a black body of known
temperature T' is attenuated with a sector of transmittancy D', it then
corresponds to the unattenuated radiation (D = 1) of a black body of tem-
perature T. Therefore, we have: _

x=lia[AVp(LY oler. o
X e—— a | — g — 1 s
This casebmay>perhaps occur when .a pyrometer is calibrated

below the gold point; the computed temperature T* is the one which is to

be associated with the measured pyrometer current.

10
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Computational Errors for Red Filter and Second Combination
(a)-Red Filter
(b) Selective attenuation media.

Here D(X) # D'()), but in general D(A) = D*¥(A)D'(A). This
is, for ekample, necessary in pyrometers, so that the radiation of the
secondary norm under equal conditions (pyrometer current) will remain
unchanged and Equations (3a) and (3b) will remain valid.

If the pyrometer is calibrated with a filter of transmittancy
D'(A), and in addition a smoked glass of transmittancy D*(A) is used, then
Equation (10)is generally true.

x=?’o+ )’1 +7’2(T,) + }’a( ) + 6105-——_ o

where g —ay %;~ o a,n_”,ﬁa,;_.; 10
Yo = "—_'.o ‘o :71 B ,}'z="2—» 7’8:‘_".8.,‘6.:.——, .

a| a“".‘a1 R

If, moreover, no neutral attenuation media are employed, then

A
D =D'=1 and log g = 0. The values of a and B8 now differ from

11




their values in section (a) - i.e., their values are as computed for the
combination of color filter and smoked glass.
2. Transmittancy Measurements
(a) Neutral attenuation media.

In order to determine transmittancy D of a neutral attenua-
tion medium, the temperature T of a black body is measured, and the
attenuation medium is then placed in the path of the radiatiomn, and the
observational temperature T' derived. We then have:

- DLPA.T) V(DA di=[P(AT) V) PR dA.":

From Equation (9) it follows that, when D' = 1 and

D(A) = D'()\) and therefore ap = ay':
vt R i), @
(b) Seleéé#&e attenﬁét;on media. | 1649

For selective attenuation media of transmittancy D#*(1),

their effective transmittancy Dg¢s in the light of a filter of trans-
mittancy D'(A) is defined by the equation
S RAT) V() D*(2) D'(R) 43 = D [;P(AT) V(A DA A
The following is derived froéwEduation (9), with D=1 and
D' = Deff: A L _
108 Derr = ﬂo— ao + (31 al')— + (az —as)— +(a,——a,)— - (21)
) The effectlve transmlttancy of a smoked glass in the light
of two color filters is presented in Figure 4 as a function of the tempera-
ture. It is experimentally determined exactly as is that of neutral

attenuation media in section (2a).

12
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Figure 4

Effective Transmittancy of Smoked Glass in the Light of Two Filters
(a)-Effective Transmittancy; (b)-Temperature;
(c)-Red Filter; (d)-Green Filter

Effective Wavelength

Effective wavelength A ¢ 1s ordinarily defined by the equation

Me, (1“1 P(2,T) V() D(A)d
cz( )=.1 Jp@TVHD@DAL

et T NP (2, ) V() D(A)dA
Here, the left side of Equation (22) is derived from Wien's approxima-
tion [Equation (7)]. As in Equation (20), it is now true that:
c%__ﬁ. _f_@H.L+i”e.L_l'
.Ae(,l"__r [ T . T)- TZ .1 T3 T3 .

For the passage to the 11m1t T » T', the effective wavelength /650

becomes the effective limiting wavelength A_,. Application of L'Hospital's

rule gives y
Ay 1 ey 1 |

o B T o

— . — — L ——— —

- The equation

13




1 oa, {17717\,
——_.__'r' —-T — 2 =] 24
et 2 [ (‘)+ ()]+2M%(T, T') 24

is true of the relationship between the effective limiting wavelength

and effective wavelength.

Equation (22) may be regarded as a definition, but a precise formu-

lation would read:

e |

e Tr—1 _, LPAT) VA D@EAA

log e Taeff 1. lo J .
TR —1 * f;P(l T)V(l)D().)dA (25)

It follows that

]\Il ﬂ:_l i_l l___l‘ T L___}_ -
‘ Cz- a’ T, T + le T2 + T" (26)

eTaeff — 1
and, finally, for the passage to the limit: 651
1 '. ' ay - :‘liz'lniv h 83 1\ cn L
L= e 4‘2—**“-'F3 1“'0 T )
2w _(_Mg’, . Mey T - Mcz T’) ( - ) : @7

Figure 5 represents 1, from Equation (23) and Equation (27) for two

color filters as a function of temperature.

Conclusion

The computational method described has the essential advantage of
achieving high accuracy with a moderate amount of calculation. Only
four integrations are required for any combination of filters, nor is it
necessary to know the effective wavelength, but it is derived as a subsidiary
result. Representation of the logarithm of the luminous-density integrals
as a polynomial of the third degree [Equation (9)] leads to a quadratic
representation of the effective wavelength [Equation (23)], which is an

improvement over the linear form given by Henning (Ref. 1).

14
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Figure 5
Effective Limiting Wavelength of Two Color Filters
Precisely Calculated According to Planck [Equation (27)]
Calculated According to Wien [Equation (23)]

(a)-Effective Wavelength; (b)-Green Filter;
(c)-Red Filter; (d)-Temperature
It is a peculiar fact that no extensive conversions are necessitated
by establishing a new value for the radiation constant cy. Instead of
expansion with respect to 1/T in Equation (8), it may also take place

with respect to c¢y/T so that:

pm gy (e} (28)

holds true.

Comparison of the coefficients gives:
ax = by ok, - (29)

where the values of by are now invariant with respect to a change in co.

15
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If a new value cp* is now introduced, the new constants ap* ensue from
the old value of ap from the relationship:
a C U e* \k
X ‘ak“‘ ==_,a;(c’ ) L (30)
S cs /.

Accuracy may be increased at will by continuing the series expansion

in Equation (9), or the temperature range may be widened. The polynomial
representation is well suited as an interpolation formula for tabulations
by means of electronic computers.

The discussion of non-black radiating bodies will follow at a later

period.
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